You can use LlamaIndex to interact with FriendliAI. This makes migration of existing applications already using LlamaIndex particularly easy.

How to use

Before you start, ensure you’ve already obtained the FRIENDLI_TOKEN from the Friendli Suite.

pip install llama-index llama-index-llms-friendli

Instantiation

Now we can instantiate our model object and generate chat completions. The default model (i.e. mixtral-8x7b-instruct-v0-1) will be used if no model is specified.

from llama_index.llms.friendli import Friendli
import os

os.environ['FRIENDLI_TOKEN'] = "YOUR_FRIENDLI_TOKEN"

llm = Friendli(model="meta-llama-3.1-70b-instruct")

Chat completion

Generate a response from a given conversation.

from llama_index.core.llms import ChatMessage, MessageRole

message = ChatMessage(role=MessageRole.USER, content="Tell me a joke.")
resp = llm.chat([message])

print(resp)

Completion

Generate a response from a given prompt.

prompt = "Draft a cover letter for a role in software engineering."
resp = llm.complete(prompt)

print(resp)